Höhe eines Blatt Papiers bei 100 Mail falten?

Welche Höhe erreicht (theoretisch) ein Blatt Papier (Dicke 0,1mm), wenn man es 100 Mal faltet?

Ist mein Ansatz richtig?

Formel:
0,0000001 km * (2^99) = Ergebnis
Ergebnis habe ich in Lichtjahre umgerechnet
([Ergebnis / 300.000 = Ergebnis in Lichtsekunden] [Ergebnis / 60[für Lichtminute] / 60[für Lichtstunde] / 24 [für Lichttag]/ 30 [für Lichtmonat]/ 12[für Lichtjahr]
= 6,7 Mrd. Lichtjahre!!!

Ist mein Ansatz richtig?

Wenn man für ein Lichtjahr gerundet 9.500.000.000.000 km ansetzt komme ich auf ca. 13 Mrd Lichtjahren, also zumindest die gleiche Größenordnung.

Die Rechnung sieht stimmig ist, es handelt sich dabei um exponentielles Wachstum, dabei kommt man schnell in solche astronomischen (sorry, konnte nicht widerstehen) Größenordnung.

Es gibt auch die bekannte Geschichte mit dem Reiskorn auf dem Schachbrett, das ist das gleiche Prinzip:

http://www.kochmix.de/kochmagazin-reis-schach–der-w…

Welche Höhe erreicht (theoretisch) ein Blatt Papier (Dicke
0,1mm), wenn man es 100 Mal faltet?

Ist mein Ansatz richtig?
Formel:
0,0000001 km * (2^99) = Ergebnis

Hallo Hatze,

nein, so ist es richtig:

0,0000001 * 2^100 = 1,267650600228230000E+23
(Excelgenauigkeit, die geht nur bis 15 signifikanten Stellen)

Gruß
Reinhard

Hallo,

Deine Frage müsste aber so lauten:

Welche Höhe erreicht ein Blatt Papier (Dicke 0,1mm), wenn man es (theoretisch) 100 Mal faltet?

Ein Blatt Papier geht nur 6 mal zu falten!(Gibt nen Versuch mit 7mal falten, aber der war nicht ganz real! :smile:

VG René

Hi Rene,

da habe ich bei MythBusters aber mal was adneres gesehen. da gings 14 mal.
Ok, man muss dazusagen, dass die größe des Blattes durch aneinanderkleben von sehr langen und sehr breiten Papierbahnen fast die eines Handballfeldes erreicht hat…aber dennoch war es ein Blatt.

Michl

Hallo Michi,

hab mal gegooglet und die reden was von 11 Faltungen. Ist aber egeal.

Vermutung liegt hier nahe, dass es ging, weil die Blätter zusammengeklebt waren. Hab es selber nicht gesehen, daher fällt mit keine andere Erklärung ein.

Was ich auch gefunden habe, wenn das Blatt 47 mal gefaltet wäre, reichte die Höhe von der Erde bis zur Sonne.

VG René

Bei einer Faltung entsteht nach landläufiger Ansicht eine Kante wie ein Buchrücken. Die Breite dieses Rückens entspricht der Anzahl der Lagen mal der Papierstärke nach dem Faltvorgang und fehlt an Länge bei der nächsten Faltung.
Ein Faltstapel, der dicker ist als lang, kann nicht weiter gefaltet werden, weil zuwenig Papier für den Rücken da ist, der Versuch also zum Zerreißen des Papiers führt, falls mit „Papier“ nicht z.B. eine dehnbare Folie gemeint ist.
Diese Grenze ist bei einem Papier, das z.B. tausendmal so lang wie dick ist, theoretisch spätestens nach dem 8. Faltvorgang erreicht. Praktisch natürlich früher, denn man wird den dafür erforderlichen Biegeradius von Null komma null praktisch kaum erreichen.

Gruß

Keksdose

2 Like

Lösung

Welche Höhe erreicht (theoretisch) ein Blatt Papier (Dicke
0,1mm), wenn man es 100 Mal faltet?

Hallo Hatze,

eine korrekte Lösung ist 101 * 0,1 mm = 10,1 mm.

Im Sinne der Aufgabenstellung wird ein Blatt 100 mal gefaltet, von der Seite aus gesehen sieht es so aus:

 /\ /\ /\
 / \ / \ / \
/ \/ \/ \...

Gruß
Reinhard