Mathe, Hausaufgabenhilfe

Mit Mathe habe ich normalerweise keine Probleme, bin jahrelang Computerprogrammierer gewesen, logisches Denken sollte funktionieren.

Jetzt kommt aber meine Tochter mit Aufgaben wie dieser nach Hause:

77 Grad Fahrenheit = 25 C
104 F = 40 C

Wieviel F ist 20 C? Wieviel C ist 0 Grad F?

Da fehlt mir das Schema, um den Ansatz zu bilden. Gibt es geeignetes Infomaterial (im Internet), um sowas zu lernen. Es würde mich echt interessiern.

Es geht mir also eher um Wege, solche Ansätze zu bilden, weniger darum, dass mir jetzt jemand den fertigen Ansatz liefert.
(Meine Logik sagt mir sowieso, dass für obige Aufgabe noch die Information über die Konstante von 32 Grad erforderlich ist, und das die Aufgabe ohne dies nicht lösbar ist.)

Danke
Hans, der sich freut, wenn er noch was dazulernen kann

unter der Rubrik Mathe/Physik bekommst du eher eine Antwort

Ajo

Danke, Mathe, Hausaufgabenhilfe
Danke, ich werde da einen Verweis plazieren.
Hans

Hallo Hans,

auch ich bin heute abend über den Mathe-Hausübungen meiner Tochter gesessen, aber zum Glück hat wenigstens sie gewusst, wie es geht :wink:

Mein Holder hat sich über das Problem gestürzt.
Er hat das Verhältnis der Differenz der Fahrenheit-Grade zu der Differenz der Celsius-Grade ermittelt.

Das Verhältnis ist

27°F = 15°C

9/5°F = 1°C

Ich hoffe, mich klar ausgedrückt zu haben.

Lieben Gruß

Hanna

Hallo,

Mit Mathe habe ich normalerweise keine Probleme, bin jahrelang
Computerprogrammierer gewesen, logisches Denken sollte
funktionieren.

Jetzt kommt aber meine Tochter mit Aufgaben wie dieser nach
Hause:

77 Grad Fahrenheit = 25 C
104 F = 40 C

also, ganz ohne eine Ahnung zu haben, wie man Grad Celcius in Grad Fahrenheit umrechnet und umgekehrt, kommt man bei dieser Aufgabe nicht weiter.

Man muss schon wissen, dass man die celciusgrade mit einem Faktor f multiplizieren muss und eine Konstante k addieren muss, um zu den Fahrenheitgraden zu gelangen, wie die Konstanten konkret aussehen, muss man aber nicht wissen. Die lassen sich anhand der beiden Beispiele bestimmen.

Dass in der Aufabe nicht nur ein „Beispiel“, aber auch keine drei Beispiele angegeben sind, ist kein Zufall. Es deutet darauf hin, dass man genau die beiden Beispiele benötigt. Und so ist es auch. Um 2 Konstanten zu ermitteln, wird man im allgemeinen ein Gleichungssystem 2. Grades lösen müssen.

Ob es sich dabei um ein lineares Gleichungssystem handelt, ist dabei nicht apriori gesagt. Hier bei dieser Aufgabe ist es aber so, und zumindest dies muss einem bekannt, sein, damit die Aufgabe lösbar ist.

In diesem Fall bekommen wir die beiden Gleichungen:

25*f + k = 77
40*f + k = 104

subtrahiere die obere von der unteren Gleichung ergibt

15*f = 27, weswegen f = 9/5 gilt.

eingesetzt in die obere Gleichung:

45 + k = 77, daraus folgt k = 32.

Wieviel F ist 20 C? Wieviel C ist 0 Grad F?

sollte jetzt geschenkt sein.

Da fehlt mir das Schema, um den Ansatz zu bilden. Gibt es
geeignetes Infomaterial (im Internet), um sowas zu lernen. Es
würde mich echt interessiern.

Ich denke, der beste Ansatz ist, mal einen Blick ins Mathebuch der Tochter zu werfen und sich zeigen zu lassen, wo sie im Unterricht gerade sind. Da wird sich dann zeigen, so vermute ich anhand der Aufgabenstellung, dass die Tochter gerade lineare Gleichungssysteme lösen lernt.

Mit dieser Information sollte es einfach sein, die Aufgabe als eine Textaufgabe aus diesem Bereich zu identifizieren.

Es geht mir also eher um Wege, solche Ansätze zu bilden,
weniger darum, dass mir jetzt jemand den fertigen Ansatz
liefert.
(Meine Logik sagt mir sowieso, dass für obige Aufgabe noch die
Information über die Konstante von 32 Grad erforderlich ist,
und das die Aufgabe ohne dies nicht lösbar ist.)

Ja, wie gesehen ist dies nicht ganz richtig. Gerade, wie groß die Konstante ist, muss man nicht wissen. Sehr wohl muss man aber wissen, dass es eine solche Konstante gibt ( und einen Faktor )

Danke
Hans, der sich freut, wenn er noch was dazulernen kann

Gruß

unimportant

Hallo,
entgegen macher anderer Meinung ist die Aufgabe ohne weitere
Angaben leicht lösbar wie folgt (ganz ausführlich) :smile:)

Gegeben sind 2 Punkte einer Geraden. Damit ist die Gerade
in einem 2 dim. Koordinatensyst. eindeutig def
-> linare Fkt y = ax + b) mit a=Steigung und b = konst (Offset).

Die Gerade kann als Zuordung von °C zu Fahrenheit in einem
x-y-Koordinatensystem dargestellt werden. Zeichne das am
besten mal auf Milimeterpapier. x-Achse = °C und y-Achse = F

Rechne also zuerst die Steigung der Gerade:
-> 77F = 25°C und 104F = 40°C
also ist die Steigung diff(°C)/diff(F) =(40-25)°C / (104-77)F
-> Steigung ist 15°C/27F d.h. eine Diff. von 15°C entspricht
einer diff von 27F = 1°C/ (15/27)F = ca. 1°C / 0,555F .
Ausgehend von einem der vorgeg. festen Punkte kann jetzt jede
andere Zuordnung gefunden werden.

Für 20°C: 20°C -25°C = -5°C -> am besten mit Verhältnisgl.
-> -5°C/ x[F] = 15°C/27°F -> x = (-5*27)/15 = -9F

Bei 20°C (25-5)°C sollten also (77-9)F = 68F zugeordnet werden.

Das geht entsprechend auch umgekehrt. nimm dann den reziproken
Wert der Steigung, also 27F/15°C. Der Rest der Rechnung ist
äquivalent zur vorherigen Rechnung.
alle Kloaaar.
Gruß Uwi

[Bei dieser Antwort wurde das Vollzitat nachträglich automatisiert entfernt]

logisch, hier …
im Brett gib’s wahrscheinlich bloß Lehrer.
Die können sowas sicher nicht oder ? *gggg*.
Gruß Uwi

unter der Rubrik Mathe/Physik bekommst du eher eine Antwort

Ajo

Hallo,
entgegen macher anderer Meinung ist die Aufgabe ohne weitere
Angaben leicht lösbar wie folgt (ganz ausführlich) :smile:)

Gegeben sind 2 Punkte einer Geraden. Damit ist die Gerade
in einem 2 dim. Koordinatensyst. eindeutig def
-> linare Fkt y = ax + b) mit a=Steigung und b = konst
(Offset).

Ahem,

woher weist Du denn daß der es zwischen C° und K einen linearen Zusammenhang gibt?
Sollte sich C° über ein Polynom 2ten Gradesd aus K errechnen:
C°=aK^2 + bK + c, so reichen 2 Gleichungen durchaus nicht aus.
Das Wissen, das ein linearer Zusammenhang besteht, muss man schon noch zusätzlich einbringen.

Max

woher weist Du denn daß der es zwischen C° und K einen
linearen Zusammenhang gibt?

Das ist eben Lebenserfahrung, die man sich durchaus schon in
jungen Jahren aneignen kann. So weiß man als normaler Mensch,
daß die temperaturskalen sinigerweise als lineare Funktion
definiert wurden.
Man muß ja nicht immer unbedingt um die Ecke denken, oder?

Sollte sich C° über ein Polynom 2ten Gradesd aus K errechnen:
C°=aK^2 + bK + c, so reichen 2 Gleichungen durchaus nicht aus.
Das Wissen, das ein linearer Zusammenhang besteht, muss man
schon noch zusätzlich einbringen.

Sollte das nun ein Mathematikerwitz sein? *ggg*.

Uwi

Hallo Hans,

die vielen fachkundigen Antworten sind echt beeindruckend! Besonders wenn man von Mathematik so gar keine Ahnung hat; wie ich zum Beispiel.

Also wenn Dich auch die Antwort eines Laien interessiert: ich rechne solche Dinge mit dem gewöhnlichen Dreisatz aus.

Viele Grüße
Sarah