Ich möchte euch schon einmal Vorwarnen, ich habe hier nicht richtig alles mathematisch formuliert und glaube viele werden nur den Kopf schütteln wenn sie das lesen.
Ich würde mich wirklich sehr freuen wenn sich jemand trotzdem die Mühe macht und mir das alles erklären will!
Gibt es ein mathematisches Teilgebiet das Sachen misst? zB. die länge eines Intervalls, falls ja sagt mir bitte bescheid.
Was sind Punkte im Mathematischen Sinne? Unendlich kleine stellen bzw. Angaben wo etwas sich befindet?
Mich beschäftigt die frage wie die Distanz zwischen zwei punkten exakt berechnet wird. Auf einer Zahlengerade rechnet man dann ja die Distanz zwischen zwei Punkten A,B folgendermasen
$ \overline{AB} $ = |A-B| Sind das alle Punkte der kürzesten Strecke von a nach b und die Punkte a,b mit eingeschlossen? Spielt das überhaupt eine Rolle?
Weiterhin dachte ich mir wenn man die Länge eines Intervalls „messen“ möchte z.B. [a,b] dann rechnet man auch |b-a|. Ist die Länge des abgeschlossen Intervall [a,b] a,b Reele Zahlen gleich dem offenen Intervall (a,b) Obwohl [a,b] zwei Punkte enthält die (a,b) nicht enthält? Ist das so weil |R ein metrischer Raum ist und d(x,x) = 0 ist also Punkte gar keine Länge haben. Ich habe mir bisher immer vorgestellt dass ein Intervall aus unendlich vielen Punkten besteht wenn jetzt jeder Punkt aber die länge 0 hat macht das keinen Sinn. dann wär der ganze Intervall 0 lang. Ich glaube ich kann das gar nicht richtig miteinander vergleichen.
Ist es ist egal wenn ich die Länge eines intervalls
[a,d](b,c seien in dem Intervall) berechnen will ob ich ihn unterteile in [a,b]+[b,c]+[c,d] oder in [a,b)+[b,c)+[c,d] … Kann man überhaupt Intervalle addieren oder mach ich hier einfach nur Quatsch?
Kann ich mir z.B. die Zahl 5 auf dem Zahlenstrahl vorstellen als alle Punkte bis zur 5, die 5 mit eingeschlossen. dann würde Man 5-3 irgendwie so darstellen können:alle elemente aus [0,5] \ alle elemente aus [0,3]
=(3,5] und das ist gleich lang wie [3,4]? also 2 dann müsste aber auch 1,99 periode = 2 sein…
Man kann also einen Intervall in endlich viele kleinere Intervalle zerteilen die nicht unbedingt disjunkt sein müssen, dann bestimmt man die länge der Teilintervalle addiert sie und erhält die Länge des gesamt Intervalls? Also unterteile ich z.B. das Intervall
[a,b] : a = $ x_0 $