Wann fliege ich mit halber Lichtgeschwindigkeit?

Hallo Experten!

Angenommen, man erfindet eines Tages eine Möglichkeit, bemannte Raumkörper auf sagen wir die halbe Lichtgeschwindigkeit zu beschleunigen. Dann dürfte ja die Beschleunigung in er Startphase nicht zu groß sein, weil das sonst für die Menschen im Raumschiff unangenehm oder sogar gefährlich wäre.

Kann mir jemand sagen, wie lange es bei einer einigermaßen angenehmen Beschleunigung dauern würde, bis das Raumschiff die halbe Lichtgeschwindigkeit erreicht hätte?

Gruß!
Karl

Hallo Karl,

die Frage passt eigentlich besser ins Physikbrett, aber egal.
Die Formel dazu lautet: t = v / a
t ist die Zeit
v ist die zu erreichende Geschwindigkeit
a ist die Beschleunigung

Das Ergebnis für t hängt jetzt natürlich davon ab, welche Beschleunigung du als „eingermaßen angenehm“ bezeichnest.
Bei den Apollo-Flügen zum Mond traten bei dem Wiedereintritt in die Erdatmosphäre Beschleunigungen bis zu 10 g (= 100 m/s2) auf. Das ist nur für kurze Zeit „angenehm“.
Wenn ein guter Sportwagen in 5 s von 0 auf 100 beschleunigt, sind das etwa 28 m/s2. Nehmen wir mal diese Beschleunigung als „angenehm“ an.
Dann haben wir:
v = 150.000 km/s = 150.000.000 m/s = halbe Lichtgeschwindigkeit
a = 28 m/s2
t = 150.000.000 m/s / 28 m/s2
= 5357143 s
= 89286 min
= 1488 Std.
= 62 Tage
Ich hoffe, ich habe mich auf die Schnelle nicht verrechnet.

Gruß und gute Reise
Andreas

Rechnen wir doch mal.
Bisher starten bemannte Raketen mit maximal 3g, zumindest das Space Shuttle tat das. Die alten Saturn Raketen und auch die aktuellen Sojus bringen noch etwas mehr, das geht aber dann schon stark auf die Knochen, selbst 3g sind schon recht heftig.
1g ist die Erdbeschleunigung also 9,81m/s² Wir beschleunigen jetzt mal mit 2g, das sollte auszuhalten sein. Also doppelt so stark wie die Erdbeschleunigung. Macht also 19,6 m/s².
Halbe Lichtgeschwindigkeit sind 300 000km/s / 2 also 150 000 km/s oder 150 000 000 m/s

Also Rechnung: 150 000 000 m/s / 19,6 m/s² macht 7653061,2 Sekunden
Oder 127551 Minuten
Oder 2125,8 Stunden
Oder 88,6 Tage
Oder knapp 3 Monate
Relativistische Effekte mal außen vor gelassen, dann wird die Rechnung komplizierter…

Ich hoffe ich hatte die Formeln jetzt korrekt im Kopf… Ansonsten bitte ich um Korrektur.

Hi,
also wenn ich richtig gerechnet habe…
t=v/a
du beschleunigst gleichmässig/gleichförmig mit 1g (ca.10m/s²)
…sollte angenehm sein…
und erreichst in ca.4150h die halbe Lichtgeschwindigkeit (150.000km/s)

Gruss Angus

Hallo Karl,

Kann mir jemand sagen, wie lange es bei einer einigermaßen
angenehmen Beschleunigung dauern würde, bis das Raumschiff die
halbe Lichtgeschwindigkeit erreicht hätte?

Machbar wären die 6 Monate bei 1g.

Bei 3g müsste ein durchschnittlicher Astronaut mit 75kg, ohne Ausrüstung, schon 2 Monate lang 225kg bewegen.
Da darfst du dann keine Bayern an Board haben, diese verdursten, weil sie die Masskrüge nicht mehr gestemmt bekommen :wink:

Weitere Probleme wären sicher Wundliegen, Durchblutungsstörungn, Herzversagen usw.

Neben der Beschleunigungwerten an sich, kommt es auch auf die Dauer der Belastung an.

MfG Peter(TOO)

Wenn die Menschheit tatsächlich irgendwann mal soweit sein sollte, dass sie Raumschiffe auf halbe Lichtgeschwindigkeit beschleunigen können werden sie bestimmt auch eine Möglichkeit gefunden haben die Beschleunigungskraft auf irgendeine Art und Weise zu vermindern, bzw. die Menschen robuster gegen hohe „Gravitation“ zu machen.
Ich denke da konkret an ein riesiges kreisrundes Raumschiff, welches rotiert. Die Passagiere befinden sich immer dort wo die Zentrifugalkraft der beschleunigenden kraft entgegenwirkt (sie müssen also die ganze Zeit in einem Zug oder auf einer Plattform sein, die sich entlang der Innenseite des Raumschiffes bewegt).
Oder die Menschen haben eine verbesserte und leistungsfähigere Muskulatur. Es könnte natürlich auch sein, dass die Forschung schon die Transformation des menschlichen Bewusstseins in Computer oder derartiges ermöglicht.

Wenn man von etwas derartigem ausgeht und das Raumschiff mit 100m/s beschleunigt (10G) würde es immernoch 0,6 Monate dauern. (antiproportionale Zuordnung)

Blitzartige Beschleunigungen wie man sie etwa aus Star Wars oder Mass Effect kennt wird es wohl nie geben können.

lg Leon

Ich denke da konkret an ein riesiges kreisrundes Raumschiff,
welches rotiert. Die Passagiere befinden sich immer dort wo
die Zentrifugalkraft der beschleunigenden kraft entgegenwirkt
(sie müssen also die ganze Zeit in einem Zug oder auf einer
Plattform sein, die sich entlang der Innenseite des
Raumschiffes bewegt).

Die Schildbürger hätten es sich nicht besser ausdenken können. Das kann so natürlich nicht funktionieren. Im mitrotierenden Sytstem hebt die Corioliskraft die Zentrifugalkraft auf und in einem mitbeschleunigten nicht-rotierenden System gibt es überhaupt keinen Effekt. Ebensogut können sich die Passagiere in ein ganz gewöhnliches Raumschiff setzen.

Es könnte natürlich auch sein, dass die Forschung
schon die Transformation des menschlichen Bewusstseins in
Computer oder derartiges ermöglicht.

Das ist der einzig erfolgversprechende Weg.

1 Like

Ich denke da konkret an ein riesiges kreisrundes Raumschiff,
welches rotiert. Die Passagiere befinden sich immer dort wo
die Zentrifugalkraft der beschleunigenden kraft entgegenwirkt
(sie müssen also die ganze Zeit in einem Zug oder auf einer
Plattform sein, die sich entlang der Innenseite des
Raumschiffes bewegt).

Die Schildbürger hätten es sich nicht besser ausdenken können.
Das kann so natürlich nicht funktionieren. Im mitrotierenden
Sytstem hebt die Corioliskraft die Zentrifugalkraft auf und in
einem mitbeschleunigten nicht-rotierenden System gibt es
überhaupt keinen Effekt. Ebensogut können sich die Passagiere
in ein ganz gewöhnliches Raumschiff setzen.

Stimmt! Das hatte ich nicht bedacht, ist aber auch logisch.
Die Zentrifugalkraft rührt ja von der ständig ändernden Bewegungsrichtung, welche natürlich nicht auftritt, wenn man
ihr innerhalb des Systems entgegenwirkt.

lg Leon

1 Like

Hallo Experten!
Vielen Dank an die schnellen Antworten, habe wieder was gelernt!

Also in 2-6 Monaten könnte man diese Geschwindigkeit nach euren Rechnungen erreichen, wobei sicher die Frage ist, ob Menschen über eine Zeit von vielen Wochen ein Vielfaches der Erdanziehungskraft aushalten!

Karl

Angenommen, man erfindet eines Tages eine Möglichkeit,
bemannte Raumkörper auf sagen wir die halbe
Lichtgeschwindigkeit zu beschleunigen. Dann dürfte ja die
Beschleunigung in er Startphase nicht zu groß sein, weil das
sonst für die Menschen im Raumschiff unangenehm oder sogar
gefährlich wäre.

Kann mir jemand sagen, wie lange es bei einer einigermaßen
angenehmen Beschleunigung dauern würde, bis das Raumschiff die
halbe Lichtgeschwindigkeit erreicht hätte?

Gruß!
Karl

Also in 2-6 Monaten könnte man diese Geschwindigkeit nach
euren Rechnungen erreichen, wobei sicher die Frage ist, ob
Menschen über eine Zeit von vielen Wochen ein Vielfaches der
Erdanziehungskraft aushalten!

Die halbe Lichtgeschwindigkeit innerhalb von einem halben Jahr zu erreichen wäre durchaus praktikabel, da die Beschleunigung des Raumschiffes genau 1G betrüge. Also dieselbe Beschleunigung wie man sie auch auf der Erde Tag für Tag erfährt. Man würde praktisch keinen Unterschied spüren wenn das Raumschiff mit dieser Beschleunigung durch den Raum fliegt, fernab von jeglichen Gravitationsfeldern, im Unterschied zur Erde.

lg Leon

1 Like

Es könnte natürlich auch sein, dass die Forschung
schon die Transformation des menschlichen Bewusstseins in
Computer oder derartiges ermöglicht.

Das ist der einzig erfolgversprechende Weg.

Mir ist noch eine weitere Möglichkeit in den Sinn gekommen um ein Raumschiff zu verwirklichen, auf welchem bei einer Beschleunigung von 100m/s² der Mensch im Inneren nur 1G erfährt.

http://img84.imageshack.us/img84/2499/gravitationsra…

Das Bild stellt ein Raumschiff da, welches etwa ein Schwarzes Loch, bzw. superschwere Materie mit sich führt. Diese ist so angebracht, dass ihre Gravitationskraft der Beschleunigung im Inneren des Raumschiffs entgegenwirkt.
Diese Möglichkeit wäre zwar sehr unpraktisch und schwer realisierbar, weil

  1. die Materialien aus dem das Raumschiff besteht äußerst robust sein müssten, damit das Raumschiff unter der enormen Gravitationskraft welche von dem Massenschwerpunkt ausgeht nicht verformt oder gar einfach zerquetscht wird.

  2. ein derart starkes Gravitationsfeld entsteht nur durch SEHR viel Masse. Diese müsste natürlich mit beschleunigt werden und das würde Unmengen an Energie kosten.

  3. wo bekommt man „ein Stückchen“ von einem schwarzen Loch her?

aber dennoch eine Möglichkeit. Wer weiß was in der Zukunft so Alles machbar ist?

lg Leon

Hallo,

Vielen Dank an die schnellen Antworten, habe wieder was
gelernt!

eigentlich nicht, denn obwohl alle (?) der hier Antwortenden
Relativitäts-Theorie-Gläubige sind ist keiner auf die Idee
gekommen (außer Brainstorm64,der diese wenigstens mal erwähnte)
diese Theorie hier einzubringen. Und dies muß man bei diesen
Geschwindigkeiten - wenn man denn Relativitätstheorie vertritt.

Also in 2-6 Monaten könnte man diese Geschwindigkeit nach
euren Rechnungen erreichen,

Nach welcher Uhr.
Beschleunigung läßt ja Uhren (jeden Eigen -Schwinger)langsamer gehen
und Geschwindigkeit soll nach der SRT auch die Zeit selbst
verlängern.
Außerdem verkürzen sich bei hoher Geschwindigkeit nach der SRT
auch Distanzen.
Welche Geschwindigkeit dann bedient wird mit den Formeln wenn
in der Formel v=s/t s zunehmend verkürzt wird mit v und t eben
zunehmend verlangsamt mit v unter Berücksichtigung der
relativistischen Transformationsformeln wäre dann interessant
zu ermitteln.Außerdem wäre dies alles noch unterschiedlich zu sehen,
vom Beobachter hier auf der Erde im Gegensatz zum Beobachter welcher mit reist.
Also - relativistisch glauben und dann realistisch rechnen - das
geht nicht.
Gruß VIKTOR

Ach VIKTOR…

eigentlich nicht, denn obwohl alle (?) der hier Antwortenden
Relativitäts-Theorie-Gläubige sind ist keiner auf die Idee
gekommen (außer Brainstorm64,der diese wenigstens mal
erwähnte)
diese Theorie hier einzubringen. Und dies muß man bei diesen
Geschwindigkeiten - wenn man denn Relativitätstheorie
vertritt.

Wenn man die Relativitätstheorie vertritt, dann weiß man, dass der Lorentzfaktor bei 0,5c ca. 1,15 ist. Bei den kleineren Geschwindigkeiten während der Beschleunigung ist er noch viel, viel geringer. Was interessieren mich da die maximal 15% Fehler bei einer so unscharf formulierten Aufgabe, wo die Beschleunigung zw. 1 und 10g schwankt? Wieso einen Threadersteller mit der RT verwirren, wenn er offensichtlich noch Probleme mit der klassischen Mechanik hat?

Gruß
Krokodi

Servus,

wieso „Vielfaches der Erdanziehungskraft“?

1 g entspricht doch genau der Anziehungskraft auf der Erde, somit wäre es sogar vorteilhaft für die Astronauten, da die üblichen Probleme der Schwerkraft (z.B. Muskel und Gehirndegeneration, Blutdruckprobleme, etc.) nicht auftreten.

Eine Beschleunigungszeit von nur 6 Monaten halte ich hierbei übrigens für erstaunlich kurz. Immerhin reden wir hier von halber Lichtgeschwindigkeit. Alpha Centauri wäre damit inklusive Beschleunigung und Abbremsung in ca. 9 Jahren erreichbar.

Was mir allerding bei den Antworten fehlt sind die relativistischen Effekte, die zwar wahrscheinlich noch nicht riesig, aber auch nicht mehr vernachlässigbar wären, oder?

Beziehen sich z.B. die 6 Monate denn auf die Uhr der Astronauten oder auf eine Uhr auf der Erde?

Gruß,
Sax

Hallo Sax,

Was mir allerding bei den Antworten fehlt sind die
relativistischen Effekte, die zwar wahrscheinlich noch nicht
riesig, aber auch nicht mehr vernachlässigbar wären, oder?

Beziehen sich z.B. die 6 Monate denn auf die Uhr der
Astronauten oder auf eine Uhr auf der Erde?

Die 6 Monate beziehen sich auf die Uhr auf der Erde, für die Astronaten wirds etwas in der Grössenordnung von einer Woche ausmachen.
Das wird aber nicht wirklich auffallen, weil dann die Antwort auf einen Funkspruch erst nach Monaten eintrifft.

MfG Peter(TOO)

Moin,

ist keiner auf die Idee
gekommen (außer Brainstorm64,der diese wenigstens mal
erwähnte)
diese Theorie hier einzubringen.

bei diesen Geschwindigkeiten kann man mit gutem Gewissen und ausreichender Genauigkeit klassisch rechnen.

Gandalf

Hallo VIKTOR und Krokodi,

auch wenn der eine glaubt, ich hätte hier nichts gelernt und der andere meint, ich hätte keinen Schimmer von der klassischen Mechanik, kann ich euch beruhigen:

Ich bin zwar nicht in der Lage, die entsprechenden Formeln mal eben so zu entwickleln, verstehe aber die Grundgedanken der klassischen Mechanik. Und meine halbe Lichtgeschwindigkeit war auch absichtlich gewählt, da ich nämlich - im Gegensatz zu Viktor - weiß, dass die Relativität für grobe Abschätzungen vernachlässigt werden kann.

Karl

eigentlich nicht, denn obwohl alle (?) der hier Antwortenden
Relativitäts-Theorie-Gläubige sind ist keiner auf die Idee
gekommen (außer Brainstorm64,der diese wenigstens mal
erwähnte)
diese Theorie hier einzubringen. Und dies muß man bei diesen
Geschwindigkeiten - wenn man denn Relativitätstheorie
vertritt.

Wenn man die Relativitätstheorie vertritt, dann weiß man, dass
der Lorentzfaktor bei 0,5c ca. 1,15 ist. Bei den kleineren
Geschwindigkeiten während der Beschleunigung ist er noch viel,
viel geringer. Was interessieren mich da die maximal 15%
Fehler bei einer so unscharf formulierten Aufgabe, wo die
Beschleunigung zw. 1 und 10g schwankt? Wieso einen
Threadersteller mit der RT verwirren, wenn er offensichtlich
noch Probleme mit der klassischen Mechanik hat?

Gruß
Krokodi

wieso „Vielfaches der Erdanziehungskraft“?

Bezieht sich auf eine Zeit von 2-3 Monaten.

1 g entspricht doch genau der Anziehungskraft auf der Erde,
somit wäre es sogar vorteilhaft für die Astronauten, da die
üblichen Probleme der Schwerkraft (z.B. Muskel und
Gehirndegeneration, Blutdruckprobleme, etc.) nicht auftreten.

Ja, verstehe, danke.

Eine Beschleunigungszeit von nur 6 Monaten halte ich hierbei
übrigens für erstaunlich kurz. Immerhin reden wir hier von
halber Lichtgeschwindigkeit.

Ja, hat mich auch überrascht. Ich hatte keine Vorstellung von der Größenordnung.

Karl

Also dieselbe
Beschleunigung wie man sie auch auf der Erde Tag für Tag
erfährt. Man würde praktisch keinen Unterschied spüren

Ich verstehe, danke!
Karl

Hallo.

In einem flüssigkeitsgefüllten Drucktank wären sehr viele höhere Beschleunigungen möglich. Im Film „Event Horizon“ wird das sehr schön demonstriert.
Evt. kombiniert mit Flüssigkeitsatmung:
http://de.wikipedia.org/wiki/Fl%C3%BCssigkeitsatmung
wären dementsprechend noch höhere Beschleunigungen möglich.

Dukath