Hallo Eljot,
man könnte natürlich vermuten, daß der Vollmond nur einen unendlich kurzen Moment wirklich kreisrund zu beobachten ist. Dem ist aber nicht so.
- ist die Sonne größer als der Mond und nur endlich weit entfernt. Folglich ist auch etwas mehr als die Hälfte des Mondes erleuchtet.
- Ein endlich weit entfernter Beobachter sieht nicht die gesamte Mondhalbkugel
Beide Effekte führen dazu, daß der Mond über einen längeren Zeitraum exakt kreisrund zu beobachten ist, sofern er exakt kugelrund wäre.
wie lange ist eigentlich *tatsächlich* Vollmond, soll heißen,
wieviele Stunden kann man den voll ausgeleuchteten Mond
theoretisch von einem optimalen Punkt der Erde aus sehen.
Wenn Erde, Mond und Sonne fast in einer Linie stehen, sodaß es gerade keine Mondfinsternis gibt, sind es rund 3,5 Stunden. Aufgrund der geometrischen Verhältnise im Sonnensystem kann man zeigen, daß dies in etwa auch der Dauer einer totalen Mondfinsternis entspricht.
Hat die nicht kreisförmige Bahn der Erde/des Mondes einen
Einfluß ?
Sicher, aber wesentlich ist vor allem die Neigung der Mondbahn zur Ekliptik. Die könnte sogar dazu führen, daß es nur selten (max. 2x pro Jahr) zu einem echten Vollmond kommt. Ob das bei dem tatsächlichen Neigungswinkel passieren kann, will ich jetzt aber nicht ausrechnen.
Danke für’s Denken
nichts zu danken 
Jörg